Point Location



Agenda

We will solve various problems from the Point Location chapter in the
course book.



Trapezoidal map: warm up

Let S be a set of non-intersecting segments, and T(S) be its trapezoidal
map.

Let s be a new segment not crossing any of the segments in S.

Prove that a trapezoid tin T(S) is also a trapezoid in T(SUs) iff s does not
Intersect t.



Trapezoidal map: warm up

o If sdoes notintersect t then t belongs to T(SUs).

e The algorithm we have seen to compute a trapezoidal map add the
segments one by one.

o If we will add s as the last segment then it clearly won’t affect t
(which is already part of the map) QED.



Trapezoidal map: warm up

o If t belongsto T(SUs)then s does not intersect t.
o Assume by contradiction that s intersects t, then clearly t is splitted.



Trapezoidal map computation

- Q6.10: Design a deterministic algorithm to compute the trapezoidal
map of a set of segments.

- No need to compute the search DAG, just the subdevision (as a
DCEL for example).

. |deas?



Trapezoidal map computation

- Solution: a plane sweep algorithm.
. Order: From left to right.

. Status: The set of segments the sweep line cross.
Event handle:

. Start and end: Find the segment above and below, and add vertical lines to
them, split the needed segments.

Intersection: swap the intersecting lines.



Segment intersection

. Given a set of segments, design an algorithm that computes all the
intersections of pairs of segments.

. Complexity O(nlogn+k) on average.

- ldeas?



Segment intersection

In the trapezoidal map computation we haven’t handled
intersecting segments, however it is not problematic.

Instead of following the segment only to the right, we will follow the
segment even if it crosses to top or bottom segments, and update
the map accordingly.

Each intersection will be handled at some point, thus we can easily
report all the intersection as a byproduct.



Segment intersection

- What is the average size of a trapezoidal map of n segments with k
intersections?

- We can think as any intersection as 4 non-intersecting segments,
thus the size is O(n+k), and thus each point location and DAG
update will take O(log(n+k)) = O(log(n))

- In addition to point locating, we will handle k intersections, thus, in
total the complexity will be O(nlog(n) +k) on average.



